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The electron - bom bardment ion thruster has been the object of a 

research and development program(3) at the Lewis Research Center and 

elsewhere for over a decade. The primary interest in this ion source has 

rested on application to advanced space propulsion systems. Two experi- 

mental space flights have been conducted with the mercury electron bom- 

bardment ion source. 

of 6000 hours in ground tests. (5) Thrusters 5 cm to 150 ~ r n ( ~ )  in diameter 

have been operated and net ion energies from 0 .4  kV to 70 kV (39 6, have 

been utilized. Mercury and cesium have been the propellants used for 

most tests because their large atomic mass is attractive for propulsion ap- 

plications. The electron-bombardment ion source can be operated with a 

variety of gases. An early refractory cathode thruster was operated with 
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w 5, This ion source has been operated in excess 

) and more recently a hollow -cathode thruster was operated 

eration with materi an mercury nd cesium is 

addition, some of interest for a number of ground based 

pplications such as biowaste expul 

paper presents the operation of a flight 

( ruster with xenon, krypton 

and carbon dioxide. gnetic spectro 

these gases to determine the ion species ejected from the source. 
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The basic 15-cm 

described previously. 

investigation has been 

cation of the SEW. 

5, and is shown in cross The details of con- 

struction and operation have been adequately described elsewhere * 

Two additional modifications were made to the thruster(8) for some of 

these tests. The orifice in the hollow cathode end cap was enlarged from 

0 . 4  mm to 0.75 mm. ther experiments(I2) indicate that cathode erosion 

rates should be reduced by as much as two orders of magnitude by this en- 

largement. For some tests the screen grid was masked down to half ra- 

dius (i. e. , '7.5 cm beam diameter). This last modification had been done 

in an earlier t~ increase the neutral density in the discharge 

chamber and had allowed a wider range of operaion with the low molecular 

weight gases. The thruster operated with the masked screen will 

ferred to herein as the modified thruster. 

The thruster startup procedure was  nearly identical to that described 

by Schertler. (8) A high starting voltage was applied, however, to both the 

cathode keeper and the anode rather than to the cathode keeper alone. 

the low molecular weight (less than 50 amu) gases the thruster discharge 

would often initiate directly between the cathode and anode followed by igni- 

tion of the keeper discharge. these cases of pressure and 

distance between the cathode and the anode was closer to the 

mum for the breakdown than that of the keeper region. 

aschen mini- 

gnetic field strength could be v ried with the eight electromag- 

he magnetic field st engths quoted herein nets described in reference 8. 
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were measured a few millimeters downstream of the cathode pole piece 

baffle 

After determining the performance on various gases with the basic and 

modified thruster, a simple mass spectrometer was installed in the facil- 

ity in order to determine the ion species in the thruster beam. All  of the 

spectrometer data were tained with the modified thruster. The spec 

eter consisted of a set  of collimating slits positioned on the beam axis, a 

uniform variable mag tic field region, and an ion current collector which 

could be biased negatively to prevent electron collection. The magnetic 

field was varied so that beam ions of different charge-to-mass ratios would 

strike the collector located at an angle of 60' with respect to the axis of 

the collimating slits. 

DISCUSSION 

Data a re  presented on the performance of xenon, krypton, argon, neon, 

nitrogen, helium and carbon dioxide. The performance I s  defined in terms 

of discharge power dissipated per beam ion produced (eV/ion) and propel- 

lant utilization. 

rent to the total inlet neutral flow rate. Al l  neutral flow rates are ex- 

pressed in equivalent amperes. 

tionated ions in the beam impacts both of these performance p 

For simplicity, the graphically presented data are shown with the assump- 

tion of singly charged parent ions in the be me Use of the magnetic spec- 

trometer allowed evaluation of the assumption of single charge s 

presented for the basic thruster@) and/or the modif ed thruster for the 

rameters which affect 

he propellant utilization is the ratio of the ion beam cur- 

he presence of multiply ionized or frqc- 
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(for example, chamber ow" keeper discha ges) are also discussed. The 

screen and accelerator extraction voltages were -1-3 and -2 kV respec- 

11 data presented herein. 

enon 

Figure 2 shows the performance of the basic thruster with xenon for 

several values of cathode propellant flow rate, Jok , and main propellant 

flow rate, Jm L) The total inlet flow rates, Jo (where Jo = Jok -1- Jm) 

varied over a larger range than shown in figure 2 but the flow rates shown 

gave the best performance. The upper limit on total flow rate resulted be- 

cause the space -charge -limited current of the ion extraction system with 

xenon was about 0.6.A. At higher total flow rates it was not possible to 

operate at high propellant utilization. The lower limit on total flow rate 

for stable discharge operation was a cathode flow rate of about 0.3A. 

discharge voltages were between 29 and 40 volts for all of the data of fig- 

ure 2. 

were 

A s  the inlet flow rates were varied the performance shifted and was 

best at the Conditions of figure 2(c), near the minimum cathode flow rate 

for that total flow rate. At optimum conditions the discharge losses were 

similar to those for mercury. The eV/ion generally decreased with in- 

creasing magnetic field at constant propellant utilization efficiency. At 

optimum flow conditions, however, the sensitivity of discharge Bosses to 

magnetic field variations was small .  The magnetic field also 

thruster stability in that as the field strength increased the stable range of 

discharge current decreased. The c osshatched a r e  s on the figures rep- 

resent regions of thruster instability * 
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Magnetic spectrometer da were obtained with xenon after the basic 

thurster had been masked down. The data are shown in figure 3. 

obtained with argon a re  also shown in figure 3 and will be discussed 

later. The ratio of the ion current due to doubly charged ions to the to- 

tal ion current is shown as a function of discharge voltage. 

twice the double ionization cross-section to the total ionization cross - 

section(13) as a function of electron energy is shown as a dashed line. 

This ratio yields the relative ion current when electron-ion-inelastic 

collisions a re  neglected. (I4) For xenon no doubly ionized atoms were 

observed at discharge voltages less than 40 volts. The measured amount 

of double ionization was, however, somewhat less than indicated from the 

cross-section data. Because all the data of figure 2 were at  discharge 

voltages less than 40 volts, the values of discharge loss and propellant 

utilization a r e  essentially those for singly charged ions. 

Krypton 

The performance of krypton is shown on figure 4 over a range of 

inlet flow rates. The upper and lower l imits  on flow rate due to ion ex- 

traction limits and discharge instability with krypton and were about 0. SA 

and 0.45 respectively. The optimum flow rate for krypton is difficult to 

t the lower magnet field strength the performance degraded as 

the cathode flow decreased. At  the high magnetic field the range of dis- 

charge stability increased with decreasing cathode flow and allowed 

higher propellant utilizations to be achieved. At  magnetic fields slightly 

higher than those shown, the thruster exhibited inst 

values of discharge current. 



No mass spectrometer data were taken with krypton. A l l  the data 

of figure 4 were taken at discharge voltages between 31 and 38 volts. The 

ratio of datable to total ionization cross-section at 40 volts is less than 

one percent(f3) so that no significant double ionization should have re- 

s ulted o 

Argon 

Argon was  tested with the modified thruster to determine if the range 

of propellant flow and stability could be improved over previously pub- 

lished data for  the basic thruster. Operation with argon is of particular 

interesx because the gas is relatively inexpensive a d  easily pumped. 

These considerations W O I E $ ~  be of importance for several ground based 

gas ion source applications 

Figure 5 shows the performance of the modified thruster with argon. 

The best performance obtained with argon in the basic thruster is shown 

by the dashed line for @smparfson. Masking the screen grid caused 

about a factor of three increase in the eV/ion. Such an increase might 

be expected because the discharge losses of this thruster type are quite 

sensitive to the open area of the screen grid. ‘15) Figure 5 also shows 

that the modified thruster could be operated at considerably lower dis- 

charge voltage than the basic: thruster. The low discharge voltages a re  

of interest because the cathode lifetime increases with decreasing dis - 

charge voltage 

The performance of the modified thruster was quite sensitive to mag- 

netic field strength. An increase in the magnetic field strength generally 

caused an increase in the discharge voltage a 

a decrease in the discharge losses. 

propellant utiliz 
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The strong dependence of discharge performance on cathode keeper 

power noted with the basic thruster was  sharply reduced with the modf- 

ruster.. For example, a variation of 8 to 34 watts keeper power 

caused less than a 5 percent change in discharge losses and less than 

a 2 percent change in propellant utilization. Such a keeper power increase 

with the basic thruster caused about a 50 percent increase in eV/ion at a 

fixed propellant utilization efficiency a 

Mass spectrometer data were taken with argon operated with the modi- 

fied thruster and a re  shown in figure 3. Double ionization was detected at 

a discharge voltage of 35 volts. n the range of discharge voltage from 50 

to 70 volts, where most of the argon data of reference 8 were obtained, 

the ratio of double to total ion current varied from 5 to 9 percent. 

tion of the modified thruster was possible, however, at discharge volt- 

ages where the fraction of doubly ionized ions were negligible (i. e.  , below 

40 volts). 

Neon, Nitrogen, and 

The discharge performance for neon and nitrogen are shown on fig- 

ure  6 (note the scale break on figure 6(b)). These gases are presented to- 

gether because the performance was extremely poor for both. The total 

inlet flow rate was through the cathode for the data of figure 6 and was $2.5 

nd 7.0 equivalent amperes for nitrogen and neon, respectively. 

tion at slightly lower neut a1 flow rates caused unstable operation with both 

gases. The 0,04 to 0.05 propellant utilizations shown on figure 6 

are substanti lly lower than the 0.1 and 0.2 values obtained in am earlier 

study his difference was most pro ably due to the characteristics of 

the present hollow cathode operating on low molecu r weight gases when 
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compared with the thermionic refractory emitters used in that study. 

Because the space-charge-limited ion beam current for either gas 

was less thaw P ampere it was impossible to obtain high propellant utili- 

zations with stable operation. 

ses.  No double ionization of neon was detected at discharge 

agnetic spectrometer data were taken 

voltages up to 80 volts, which is in agreement with available cross- 

(I3) Figure 7 shows the spectrometer data taken with nitro- 

gen at a discharge potential of 60 volts. Relative percentages of peak ion 

currents were 78, 15, and 7 percent for charge-to-mass ratios corre- 

sponding to 28, 14, and 7 amu for  singly charged ions. The peak at 7 amu 

equivalent was probably doubly charge atomic nitrogen. Because a mag- 

netic spectrometer was used, the relative fractions of doubly charged di- 

atomic and singly charged atomic nitrogen at 14 amu equivalent could not 

be assessed. 

Helium was also operated briefly during one test. The neutral flow 

rates required to initiate the discharge with helium were such as to raise 

the vacuum tank pressure to approximately PO-3 torr .  Operation with 

helium was not possible at values of discharge voltage and current below 

approximately 100 volts and 10 amperes, respectively. Very limited test- 

ing was done with helium because operation at the required discharge pa- 

rameters would probably result in  very short cathode lifetime. Again, 

operation on helium with the hollow cathode was more difficult than with 

the refractory thermionic emitter of reference '9. 

The modified thruster was operated with carbon dioxide, a possible 

ste propellant(109 as the main flow propellant (fig. 9 and argon as 
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the cathcpde flow propellant. Carbon dioxide was not introduced through 

the cathode because of the possibility of cathode -material oxidation. Some 

results are shown in figure 8. o r  these data the rgon flow rate was 

held nearly constant at 0.1 equivalent ampere 

flow the argon flow rate was 0.27 ampere. The 0.1 ampere argon cath- 

ode flow was the lowest that allowed stable thruster operation at any car-  

bon dioxide flow rate. The discharge voltage was between 52 and 64 volts 

for the data of figure 8, he addition of carbon dioxide first caused the 

ion beam current to increase to 0.3 ampere and then decrease monotoni- 

cally with increasing carbon dioxide flow rate. The measured currents 

indicated propellant utilizations from about 0.8 at about a 2.5:1 carbon 

dioxide to argon flow ratio to less than 0.01 at a 5 0 ~ 1  flow ratio. Mag- 

netic spectrometer data were also taken during the argon-carbon dioxide 

test. The resolution of the spectrometer did not allow clear separation of 

the ion currents corresponding to singly changed particles of amu 28 to 44. 

This range would include C 

was increased to 1 .9  ampere, however, the ion current at amu 16 in- 

creased to about 30 percent of the total ion current. 

noted that the peak ion current occurred at a slightly lower spectrometer 

magnetic field as the carbon dioxide flow increased. his indicated that 

ith no carbon dioxide 

, A', and CQ;. As the carbon dioxide flow 

n addition, it was 

was formed in substanti 1 quantities in  the discharge. 

G RKS 

A modified S ion thruster was operated with xenon, krypton, 

argon, neon, nitrogen, helium, and c rbon dioxide. The disc 

folrmance with xenon, krypton, and argon was simil r to that obtained 
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previously with mercury. (8) Mass spectrometer data indicated that xenon 

could be operated ef€iciently with no significant multiple ionization. 

striction of the beam area, with an associated decrease in discharge p- 

tentfa%, was necessary to reduce multiple ionization with argon to 

gible level. his modification also resulted in more stable operation of 

the thruster. Performance with the remaining gases was poor, but some 

future performance improvements may be realizable with modifications 

directed specifically Loward law molecular weight gas operation. 
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Figure 1. - Sketch of 15-cm. diameter electron bombardment thruster. 
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Figure 2. - Discharge 
chamber performance 
for xenon. 
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Figure 3. - Ratio of doubly charged to total ion 
current for xenon and argon. Modified 
thruster. 
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Figure 5. - Discharge chamber per- 
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Figure 6. - Discharge chamber per- 
formance with nitrogen and neon. 
Modified thruster. 
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SPECTROMETER MAGNETIC FIELD 
STRENGTH, T x 10 

Figure 7. - Collected ion current 
as a function of spectrometer 
magnetic field strength with ni- 
trogen. Modified thruster; dis- 
charge voltage, 60 V. 

CARBON DIOXIDE NEUTRAL 
FLOW RATE, A 

Figure 8. - Effect of carbon dioxide 
flow rate on ion beam current  
cathode flow, argon, modified 
thruster. 
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